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SETTING THE TASK. The set of natural numbers [1, �� + 2��] we will write 

in the form of a table, with � consecutive numbers in each row as follows (In this 

article, we are not talking about the "sieve of Eratosthenes"): 

1 2 3,… � − 1 � 

� + 1 � + 2 � + 3, … 2� − 1 2� 

2� + 1 2� + 2 2� + 3, … 3� − 1 3� 

3� + 1 3� + 2 3� + 3, … 4� − 1 4� 

… … … … … 

�� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� 

… … … … … 

�� − 1�� + 1 �� − 1�� + 2 �� − 1�� + 3, … �� − 1 �� 

�� + 1 �� + 2 �� + 3, … �� + 1�� − 1 �� + 1�� 

�� + 1�� + 1 �� + 1�� + 2 �� + 1�� + 3, … �� + 2�� − 1 �� + 2�� 

�� + 2�� + 1 = �� + 1�� In this article, we are not talking about the "sieve of Eratosthenes" 

 

ANNOTATION. Using the prime number distribution theorem, we prove many 

open problems in number theory, such as Brocard's hypothesis, Landau's 3rd problem, 

and others. 

Action. At the same time, in the randomly selected and first rows of the table, we cross 

out all the numbers that are multiples of the prime number � ∈ � = �2,3,5, … , ��. 

Here � is the set of all the primes in the first row of the table, and � runs through all 

the primes in the set �. In some rows of the table (before the deletion begins), the 

number of numbers that are multiples of some numbers (hereinafter in the text these 
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numbers are designated as critical numbers) of the set � is 1 more than in the first row 

(hereinafter in the text these numbers are designated as problem numbers). In randomly 

selected rows, we cross out no more numbers than in the first row of the table. If 

necessary (theoretically), in order to maintain such a balance of the numbers crossed 

out (in the first rows taken at random), in some cases we leave the problematic numbers 

(theoretically) not crossed out. As a result, we prove (Lemma 3) that, according to the 

results of crossing out, there are actually no problem numbers left in the table. And in 

the first line the number “1” (one) remains uncrossed out. This means that at least one 

number, a prime number, remains uncrossed in each row of the table. 

THEOREM. For any natural numbers � ≥ 2 and �, where 1 ≤ � ≤ � + 2, there 

is at least one prime number in the range [�� − 1�� + 1, ��]. 
IN OTHER WORDS: there is at least one prime number in each complete row of the above 

table.  

PROOF OF THE THEOREM. 

Obviously, there is always a prime number in the first row of the table. 

ACCORDING TO BERTRAND'S POSTULATE: for any natural � ≥ 2, there is a 

prime number in the interval [�, 2�]. Therefore, in this paper, we do not analyze the 

second line of the table for the presence of primes in it (we do not prove it). 

Now let's prove that, starting from the third row, there is at least one prime 

number in an arbitrary row of the table. 

LEMMA 1. For any (arbitrarily taken) natural number � ≤ �, in an arbitrarily 

taken row of the table, the number of numbers ���� that are multiples of � is written: 

���� = ���� + ∆�                                                                                                           (1) 

Here ���� = � 
�! is the number of multiples of � in the first row of the table. 

Let's prove that either ∆�= 0 or ∆�= 1. 

PROOF OF LEMMA 1. It suffices to prove that ∆�< 2. 

The length (the number of all numbers in a row) of the first row is written as follows: 

� = �� − 1� + $1 + $� 
�! − 1% ∙ �% + ' = � 

�! ∙ � + '                                            (2) 

Here 0 ≤ ' ≤ � − 1                                                                                                    (3) 
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�� − 1� – the number of numbers at the beginning of the first line up to m, 

' is the number of numbers (at the end of the first line) after the largest multiple of �. 

Suppose that in some row of the table ∆�= 2. In this case, the minimum length 

(number of numbers) is there will be such a line: 

� = ($� 
�! + ∆�% − 1) ∙ � + 1 = ($� 

�! + 2% − 1) ∙ � + 1 = � 
�! ∙ � + � + 1               (4) 

Taking into account (2), (3), and (4), we obtain the following contradiction: 

� 
�! ∙ � + ' = � 

�! ∙ � + � + 1 ⇒ ' = � + 1  

LEMMA 1 is proved. 

Designation. For ∆�= 0, we denote the number � as a good number. And for 

∆�= 1, we denote the number � as a critical number. 

Designation. If ∆�= 1 in any row, then we will denote this as follows: in this 

row, the number ���� is "increased in favor of the number" 

� 
�! + 1, or  ���� → � 

�! + 1. 

Designation. If ∆�= 1, then there is a number , in such a row that is a multiple 

of  � ∙ $� 
�! + 1% > �.  In other words, there was an increase in ���� in favor of  

� 
�! + 1 in this row, that is, ���� → � 

�! + 1. Let's denote the number , as a problem 

number, and define it this way 

, = .� $� 
�! + 1% =  .�0�� = .�0 $�  

12
! + 1% ≥ � + 1.                                                    (4A) 

Here � = �0,  �  
12

! + 1 = ��,  �0 → �  
12

! + 1,  . is a natural number. 

PROPERTY 1. Let's number the rows of the table as 1, 2, 3, …  For rows under numbers  

�1, � + 1, 2� + 1, 3� + 1, … �                                                                                 (4В) 

the value ∆�= 0 is periodically repeated. 

Consequence of  PROPERTY 1. In all the lines indicated by (4B), the number � 

is good. 

LEMMA 2. Suppose that we crossed out in an arbitrary row (at the same time in 

the first row) of the table all the numbers that are multiples of the good (if any) prime 
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number �0 ∈ �, for which there was 

���0� = ���0�.      

After such a deletion, we will study the number of remaining (non-deleted) numbers 

that are multiples of an arbitrarily taken prime number �3 ∈ � ∖ �0, for which it was 

originally 

���5� = � 
65

! + ∆65 = ���0� + ∆62.                                                                           

And after crossing out the numbers that are multiples of �0 ∈ �, it becomes 

,��3� = 7��3� + 869. 

At the same time, it is obvious that in the first and randomly selected rows there will 

be no numbers that are multiples of  �0�3. 
Let's prove that  

869 ≤ ∆69 .                                                                                                                        (5)  

PROOF OF LEMMA 2. According to (1), for a prime number �3 and for � = �0�3, we 

write: 

���3� = ���3� + ∆69                                                                                                     (6) 

���0�3� ≥ ���0�3�                                                                                                        (7) 

,��3� = 7��3� + 869                                                                                                     (8) 

From (6) we subtract (7) 

���3� − ���0�3� ≤ ���3� − ���0�3� + ∆69                                                                   (9) 

In (8) we replace  

,��3� = ���3� − ���0�3�  

7��3� = ���3� − ���0�3�  

We get 

,��3� ≤ 7��3� + ∆69                                                                                                      (10) 

Compare (8) and (10), we get 

869 ≤ ∆69                                                                                                                      (11) 

LEMMA 2 is proved. 
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Corollary 1 of LEMMA 2. Good numbers do not become critical in the process of 

crossing out. 

Corollary 2 of LEMMA 2. If in an arbitrary string, for ∆�= 1, the number � 
�! + 1 (or 

one of its factors) is a good number, then when crossing out numbers that are multiples 

of the number � 
�! + 1 (or its good divisor), the number m becomes good. For example, 

for � = 13 in the third row ∆:= 1. In other words, in the first row of such a table, four 

numbers 3, 6, 9, 12 are multiples of 3, and in the third row there are five such numbers 

27, 30, 33, 36, 39. That is ��3� → �0:
: ! + 1 = 5. The number 5 in this row is a good 

number, that is, ∆>= 0. In the third line, we cross out two numbers (30, 35) that are 

multiples of the good number 5. In parallel, and in the first line, we cross out two 

numbers (5, 10) that are multiples of the good number 5. In the new state of the third 

row of the table, the number of numbers (27, 33, 36, 39) that are multiples of 3 has 

become the same as in the first row (3, 6, 9, 12) – four.  That is, in the beginning there 

was ��3� = �0:
: ! + 1 = ��3� + 1 = 4 + 1 = 5. And after crossing out the numbers 

that are multiples of 5, for the number 3 it turned out 

 8: = 0 ⇒ ,�3� = 7�3� + 8: = 7�3� + 0 = 4                                                                                            

1 2 3 4 5 6 7 8 9 10 11 12 13 

14 15 16 17 18 19 20 21 22 23 24 25 26 

27 28 29 30 31 32 33 34 35 36 37 38 39 

 

Corollary 3 of  LEMMA 2. At any stage of deletion If ∆6= 0 (or 86 = 0), then in an 

arbitrarily chosen row of the table we will delete no more numbers (multiples of good 

�) than in the first row of the table (multiples of �), and in this case in an arbitrarily 

chosen row there will not remain a single number multiple of �.   

LEMMA 3. If ∆6= 1, then there is a critical prime � in an arbitrary string, and 

there may be a problem number (4A)    

, = .� $� 
�! + 1% =  .�0�� = .�0 $�  

12
! + 1% ≥ � + 1. 
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Let's prove that after crossing out (in an arbitrarily taken row, we cross out no more 

numbers than in the first row) numbers that are multiples of all the primes of the set 

� = �2,3,5, … , ��, there will not be a single problem number left in the table. 

PROOF OF LEMMA 3. Proof by contradiction. In the proofs of individual lemmas, the 

letter @ indicates the values corresponding to the conditions of the lemma.   Based on 

the results of the two lemmas, it is obvious that when crossing out numbers that are 

multiples of good numbers, no more numbers were crossed out in an arbitrary row than 

in the first row of the table. In the process of this crossing out, some critical numbers 

have become kind. Therefore, if at the end of the crossing out any problematic numbers 

remain uncrossed, then the multipliers (divisors) of such problematic numbers can only 

be critical primes (since numbers with good divisors have already been crossed out). 

Let's assume that at the end of the strikeout in an arbitrary line, some problematic 

numbers , remained uncrossed (4). 

Let's make a table of possible such problematic numbers. Here ��0, ��, �:, �A�  are the 

set of all possible critical numbers: 

,0 = �0���:�A ,� = �0: ,: = �0��� ,A = �0���: 

 

AUXILIARY LEMMA 3.1.  If the problem number that has not been crossed out has the 

form ,0 = �0���:�A, then according to (4), the inequalities are fulfilled for 

B�C , �D ,  �E , �FG = ��0, ��, �:, �A�: 

�C ∙ �D ≥ � + 1,   �E ∙ �F ≥ � + 1. 

Therefore, 

,0 = �0���:�A ≥ �� + 1��                                                                                         (12) 

(12) contradicts the assumption, since the number �� + 1�� is outside the table. 

AUXILIARY LEMMA 3.1 is proved. 

AUXILIARY LEMMA 3.2.  If the problem number that has not been crossed out has the 

form ,� = �0:, then one option is possible: 

�0 → �0,   

Therefore, 
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�0 → �0 ⇒ �0 = �  
12

! + 1 ⇒ �0 ∙ $�  
12

! + 1% = �0� ⇒ � + 1 ≤ �0� < 2�  

Since in the second row of the table the number �0� is the smallest multiple of �0, we 

write �0� − �0 < �, and continue as follows: 

�0� − � = @ < �0 ⇒ @ ≤ �0 − 1 ⇒ �0@ ≤ �0� − �0 < � ⇒ �0@ < �, 

and therefore 

�0� − � = @ ⇒ �0: − �0� = �0@ ⇒ �0: = �0� + �0@                                                (13) 

(13) means that the number ,� = �0: = �0� + �0@ is in the ��0 + 1� th row of the 

table. According to the corollary of PROPERTY 1, the number �0 is kind, which means 

that the number ,� = �0: is actually not problematic. 

AUXILIARY LEMMA 3.2 is proved. 

AUXILIARY LEMMA 3.3.  If the problem number that has not been crossed out has the 

form ,: = �0���, then there are four possible options: 

�0 → �� → �0 �0 → �� → �0 �0 → �� → �� �0 → �� → �� 

�0 > �� �0 < �� �0 > �� �0 < �� 

 

If the condition �0 → �� → �0 and �0 > �� is true for ,: = �0���, then �0�� is the 

smallest number in the second row of the table that is a multiple of both �0 and ��. 

Next, for @ < �� < �0, we write �0�� = � + @. Multiply the latter by ��, and we get 

,: = �0��� = ��� + ��@  

Since @ < �0, then ��@ < �. Otherwise, the number ��@ < �0�� must be in the second 

row (�0�� is the smallest number in the second row that is a multiple of ��). It turns 

out that the number ,: = �0��� = ��� + ��@ is in the ��� + 1� th row, therefore, 

according to the corollary of  PROPERTY 1, the number �� is not critical, and the 

number ,: = �0��� is not problematic. 

SIMILARLY, for   �0 → �� → �0 and �0 < ��, we prove that the number �� is not 

critical, and the number ,: = �0��� is not problematic. 

If for ,: = �0��� we have �0 → �� → �� and �0 > ��, then the number ��� is the 

smallest number in the second row of the table that is a multiple of ��. Let's write   
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��� = � + @.  Multiply by �0 and we get �0��� = �0� + �0@. Taking into account @ <
�� < �0, we get �0@ < �. The number ,: = �0��� = �0� + �0@ is in the ��0 + 1� th 

row, therefore, according to the corollary of PROPERTY 1, the number �0 is not critical, 

and the number ,: = �0��� is not problematic. 

If the condition �0 → �� → �� and �0 < �� is true for ,: = �0���, then it turns out that 

the numbers �0�� and ��� are simultaneously the smallest numbers in the second row 

that are multiples of ��. And this is not possible because of �0 ≠ ��. 

AUXILIARY LEMMA 3.3 is proved. 

AUXILIARY LEMMA 3.4. If the uncrossed out problem number has the form 

,A = �0���:, then there are three options  

�0 → �� → �: → �0 �0 → �� → �: → �� �0 → �� → �: → �: 

  

If for ,A = �0���: the condition �0 → �� → �: → �0 is met, then theoretically we get: 

* �0�� in the second row is the smallest number that is a multiple of �0.  

** �:�0  in the second row is the smallest number that is a multiple of �:. That is, it 

should be �0�� < �:�0. 

*** ���: in the second row is the smallest number that is a multiple of ��. That is, 

theoretically it should be: 

���: < �0�� ⇒ �: < �0,   

���: > �:�0 ⇒ �� > �0  

�0�� < �:�0 ⇒ �� < �:.  

According to the first two inequalities, �: < �0 < �� ⇒ �: < �� is obtained. And this 

contradicts the third inequality, where   �� < �:. 

If for ,A = �0���: the condition �0 → �� → �: → �� is fulfilled, then theoretically it 

turns out: 

* �0�� in the second row is the smallest number that is a multiple of �0.  

** ���:  in the second row is the smallest number that is a multiple of ��. Also, the 

condition �: → �� means that the number ���: in the second row is the smallest 

multiple of �:.  That is, it should be ���: < �0��. 
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Let's write  ���: = � + @. Multiply by �0, we get  �0���: = �0� + �0@.  Так как @ <
��, @ < �:, то �0@ < �0��.  Since @ < ��, @ < �:, then �0@ < �0��. The latter means 

that the number �0@ is in the first row (�0�� in the second row is the smallest multiple 

of �0). It turns out that the number ,A = �0���: = �0� + �0@ is in the ��0 + 1� -th 

row, therefore, according to the corollary of  PROPERTY 1, the number �0 is not critical, 

and the number ,A = �0���: is not problematic. 

If the condition �0 → �� → �: → �: is true for ,A = �0���:, then theoretically it turns 

out: 

* �0�� in the second row is the smallest number that is a multiple of �0. 

** ���:  in the second row is the smallest number that is a multiple of  ��. We get  

���: < �0��. 

Let's write ���: = � + @ ⇒ @ < ��. Multiply by  �0, we get �0���: = �0� + �0@.  

Since @ < ��, the number �0@ is in the first row (�0�� in the second row is the smallest 

multiple of �0).This means that the number ,A = �0���: = �0� + �0@ is in the 

��0 + 1� th row, therefore, according to the corollary of PROPERTY 1, the number �0 

is not critical, and the number ,A = �0���: is not problematic. 

AUXILIARY LEMMA 3.4 is proved. 

LEMMA 3 is proved. 

THEOREM  is proved.  

COROLLARY 1. SOLUTION OF THE 3RD LANDAU PROBLEM (Legendre's conjecture). 

For any natural � between �� and �� + 1�� there is at least one prime number.  

It is obvious that Legendre's hypothesis is a special case of the prime number 

distribution theorem, and for any natural � between �� and �� + 1�� there will be at 

least two primes, since there are two complete rows in the specified interval (at least 

one prime number in each). 

COROLLARY 2. BROCARD'S CONJECTURE. For any natural number I between �J� and 

�JK0�  (where �J > 2 and �JK0 are two consecutive primes), there are at least four 

primes. 

For any prime number �J > 2, we can write as follows:  
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�J = � − 1 and �J + 2 = � + 1. 

 �JK0 − �J ≥ 2 

Between �J� = �� − 1�� and ��J + 2�� = �� + 1�� there are four complete lines, 

each of which has at least one prime number. We take into account that the minimum 

difference between consecutive (starting from 3) primes is 2, and therefore we chose 

�JK0 = � + 1. So, the greater the difference between consecutive primes, the more 

primes there are between their squares. 

  … �� − 2�� 

1 �� − 1�� … �� − 1�� 

2 �� − 1�� + 1 … �� 

3 �� + 1 … �� + 1�� 

4 �� + 1�� + 1 … �� + 2�� 

 �� + 1�� …  

 

 


