Logman Shihaliev Born on 1960.08.10. A simple citizen. «ORBİTA TECHNOLOGY» LTD (auditor), «KOMMERSANT T. A» (engineer) logman1@list.ru +994505149553

ORCID: 0000-0003-1063-4712

Abstract

The subject of this article is the $a b c$ _conjecture study. The relevance of the problem under study lies in the fact that it is one of the unsolved problems of number theory [1]. The purpose of the article is to prove that $a b c$-conjecture is correct.

Key words. abc conjecture; Number theory.

Classification numbers: MSC: 11A99

InTRODUCTION

In this paper, two lemmas and one theorem are proved.
Lemma 1. For any natural number w, there is only a finite number of triples a, b, c of mutually prime natural numbers such as $a+b=c$ and the following inequality holds.
$c>\operatorname{rad}(a b c)$,
here $\operatorname{rad}(a b c)=\operatorname{rad}(w)$
Lemma 2. As a consequence of Lemma 1, it becomes obvious that, similarly, for any real positive number ε, there are only a finite number of triples a, b, c of mutually prime natural numbers such as $a+b=c$ and the following inequality holds
$c>\operatorname{rad}(a b c)^{1+\varepsilon}$
Theorem. For every positive real number ε, there is a constant $K(\varepsilon)$ such that for all triples a, b, c of mutually prime natural numbers, where $a+b=c$, the following inequality is true
$c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon}$

Proofs.

Proof of lemma 1. We prove that for any natural number w there are only finitely many triples a, b, c of mutually prime natural numbers such as $a+b=c$ and the following inequality
$c>\operatorname{rad}(a b c)$.
Here and throughout the article, $\operatorname{rad}(a b c)=\operatorname{rad}(w)=$ const

w is an arbitrary natural number.

Suppose the opposite, that there are an infinite number of triples of a, b, c.
For the numbers a, b, c, we write:
$\left\{\begin{array}{l}a=\alpha+k_{a} \cdot \operatorname{rad}(a b c) \\ b=\beta+k_{b} \cdot \operatorname{rad}(a b c) \\ c=\gamma+k_{c} \cdot \operatorname{rad}(a b c)\end{array}\right.$
Here $\alpha, \beta, \gamma, k_{a}, k_{b}, k_{c}$ are natural numbers, and
$0<\alpha<\operatorname{rad}(a b c), \quad 0<\beta<\operatorname{rad}(a b c), \quad 0<\gamma<\operatorname{rad}(a b c)$
Note 1. Obviously, if $c=\gamma+k_{c} \cdot \operatorname{rad}(a b c)$, then $c>\operatorname{rad}(a b c)$.
It is obvious from (3) that
$\left\{\begin{array}{l}\operatorname{rad}(a b c) \equiv 0(\operatorname{modrad}(a)) \Rightarrow \operatorname{rad}(\alpha) \equiv 0(\operatorname{modrad}(a)) \Rightarrow \operatorname{rad}(\alpha) \geq \operatorname{rad}(a) \\ \operatorname{rad}(a b c) \equiv 0(\operatorname{modrad}(b)) \Rightarrow \operatorname{rad}(\beta) \equiv 0(\operatorname{modrad}(b)) \Rightarrow \operatorname{rad}(\beta) \geq \operatorname{rad}(b) \\ \operatorname{rad}(a b c) \equiv 0(\operatorname{modrad}(c)) \Rightarrow \operatorname{rad}(\gamma) \equiv 0(\operatorname{modrad}(c)) \Rightarrow \operatorname{rad}(\gamma) \geq \operatorname{rad}(c)\end{array}\right.$
where we take into account that $\alpha \cdot \beta \cdot \gamma \neq 0$, since a, b, c are mutually prime numbers.

From (5) we get
$\operatorname{rad}(\alpha \beta \gamma) \geq \operatorname{rad}(a b c) \quad$ and $\quad \operatorname{rad}(\alpha \beta \gamma) \equiv 0(\operatorname{modrad}(a b c))$
The numbers a, b, c are written as follows (canonical decomposition of the number):
$\left\{\begin{array}{l}a=a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}} \\ b=b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}} \\ c=c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}\end{array}\right.$
where $a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{j}, c_{1}, c_{2}, \ldots, c_{k}$ are different prime numbers, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \beta_{1}, \beta_{2}, \ldots, \beta_{j}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}-$ natural numbers.

Therefore
$\operatorname{rad}(a)=a_{1} \cdot \ldots \cdot a_{i} \quad \operatorname{rad}(b)=b_{1} \cdot \ldots \cdot b_{j} \quad \operatorname{rad}(c)=c_{1} \cdot \ldots \cdot c_{k}$
Next, for α, β, γ, taking into account (5) and (6), we write
$\left\{\begin{array}{l}\operatorname{rad}(\alpha)=\operatorname{rad}\left(\partial_{\alpha}\right) \cdot a_{1} \cdot a_{2} \cdot \ldots \cdot a_{i} \\ \operatorname{rad}(\beta)=\operatorname{rad}\left(\partial_{\beta}\right) \cdot b_{1} \cdot b_{2} \cdot \ldots \cdot b_{j} \\ \operatorname{rad}(\gamma)=\operatorname{rad}\left(\partial_{\gamma}\right) \cdot c_{1} \cdot c_{2} \cdot \ldots \cdot c_{k}\end{array}\right.$
where $\partial_{\alpha}, \partial_{\beta}, \partial_{\gamma}$ are natural numbers, and $\left(a, \partial_{\alpha}\right)=1,\left(b, \partial_{\beta}\right)=1,\left(c, \partial_{\gamma}\right)=1$.
Note 2. If $\operatorname{rad}(\alpha)=\operatorname{rad}(a)$, then $\partial_{\alpha}=1$, if $\operatorname{rad}(\beta)=\operatorname{rad}(b)$, then $\partial_{\beta}=1$ and if $\operatorname{rad}(\gamma)=\operatorname{rad}(c)$, then $\partial_{\gamma}=1$.

NOTE 3. According to the conditions of the problem, the values of the numbers a, b, c change (increase), and $\operatorname{rad}(a b c)=$ const.

Note 4. Lots of different triples of numbers (regardless of the growth of the values of $a, b, c) \alpha, \beta, \gamma$ is limited, since $\alpha, \beta, \gamma<\operatorname{rad}(a b c)=$ const.

Taking into account $a+b=c$, we write

$$
\begin{array}{r}
a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}+b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}=c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}} \Rightarrow \\
\Rightarrow \frac{a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \ldots \cdot a_{i}^{\alpha_{i}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \ldots . . c_{k}^{\gamma_{k}}}+\frac{b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \ldots . \cdot c_{k}^{\gamma_{k}}}=1 \tag{9}
\end{array}
$$

The terms on the left side of equality (9) are written in the form of formulas of numerical sequences:
$0<A(n)=\frac{a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \ldots \cdot c_{k}^{\gamma_{k}}}<1, \quad 0<B(n)=\frac{b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \ldots \cdot b_{j}^{\beta_{j}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}}<1$

Here $n=\{1,2,3, \ldots\}$. Suppose that $a \rightarrow+\infty, b \rightarrow+\infty, c \rightarrow+\infty$. In this case, the values of the numbers a, b, c will grow only due to the growth of degrees $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \beta_{1}, \beta_{2}, \ldots, \beta_{j}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$, since $\operatorname{rad}(a b c)=$ const. In this case, it may be that the values of some degrees will remain limited (they do not tend to infinity), and for the same reason fractions $\frac{P_{a}}{P_{c}}$ and $\frac{P_{b}}{P_{c}}$ are formed. That is

$$
\left\{\begin{array}{l}
a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}=a_{01}^{\alpha_{01}} \cdot a_{02}^{\alpha_{02}} \cdot \ldots \cdot a_{0 w}^{\alpha_{0 w}} \cdot a_{11}^{\alpha_{11}} \cdot a_{12}^{\alpha_{12}} \cdot \ldots \cdot a_{1 v}^{\alpha_{1 v}} \tag{11}\\
b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}=b_{01}^{\beta_{01}} \cdot b_{02}^{\beta_{02}} \cdot \ldots \cdot b_{0 d}^{\beta_{0 d}} \cdot b_{11}^{\beta_{11}} \cdot b_{12}^{\beta_{12}} \cdot \ldots \cdot b_{1 t}^{\beta_{1 t}} \\
c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}=c_{01}^{\gamma_{01}} \cdot c_{02}^{\gamma_{02}} \cdot \ldots \cdot c_{0 m}^{\gamma_{0 m}} \cdot c_{11}^{\gamma_{11}} \cdot c_{12}^{\gamma_{12}} \cdot \ldots \cdot c_{1 n}^{\gamma_{1 n}}
\end{array}\right.
$$

Here

$$
\left\{\begin{array}{l}
w+v=i \tag{12}\\
d+t=j \\
m+n=k
\end{array}\right.
$$

$\left\{\begin{array}{l}\left\{a_{1}^{\alpha_{1}}, a_{2}^{\alpha_{2}}, \ldots, a_{i}^{\alpha_{i}}\right\}=\left\{a_{01}^{\alpha_{01}}, a_{02}^{\alpha_{02}}, \ldots, a_{0 w}^{\alpha_{0 w}}\right\} \cup\left\{a_{11}^{\alpha_{11}} \cdot a_{12}^{\alpha_{12}} \cdot \ldots \cdot a_{1 v}^{\alpha_{1 v}}\right\} \\ \left\{b_{1}^{\beta_{1}}, b_{2}^{\beta_{2}}, \ldots, b_{j}^{\beta_{j}}\right\}=\left\{b_{01}^{\beta_{01}}, b_{02}^{\beta_{02}}, \ldots, b_{0 d}^{\beta_{0 d}}\right\} \cup\left\{b_{11}^{\beta_{11}}, b_{12}^{\beta_{12}}, \ldots, b_{1 t}^{\beta_{1 t}}\right\} \\ \left\{c_{1}^{\gamma_{1}}, c_{2}^{\gamma_{2}}, \ldots, c_{k}^{\gamma_{k}}\right\}=\left\{c_{01}^{\gamma_{01}}, c_{02}^{\gamma_{02}}, \ldots, c_{0 m}^{\gamma_{0 m}}\right\} \cup\left\{c_{11}^{\gamma_{11}}, c_{12}^{\gamma_{12}}, \ldots, c_{1 n}^{\gamma_{1 n}}\right\}\end{array}\right.$
$\left\{\begin{array}{l}a_{01}^{\alpha_{01}} \cdot a_{02}^{\alpha_{02}} \cdot \ldots \cdot a_{0 w}^{\alpha_{0 w}}=P_{a} \\ b_{01}^{\beta_{01}} \cdot b_{02}^{\beta_{02}} \cdot \ldots \cdot b_{0 d}^{\beta_{0 d}}=P_{b} \\ c_{01}^{\gamma_{01}} \cdot c_{02}^{\gamma_{02}} \cdot \ldots \cdot c_{0 m}^{\gamma_{0 m}}=P_{c}\end{array} \quad\left\{\begin{array}{l}a_{11}^{\alpha_{11}} \cdot a_{12}^{\alpha_{12}} \cdot \ldots \cdot a_{1 v}^{\alpha_{1 v}}=M_{a}^{f(\alpha)} \\ b_{11}^{\beta_{11}} \cdot b_{12}^{\beta_{12}} \cdot \ldots \cdot b_{1 t}^{\beta_{1 t}}=M_{b}^{f(\beta)} \\ c_{11}^{\gamma_{11}} \cdot c_{12}^{\gamma_{12}} \cdot \ldots \cdot c_{1 n}^{\gamma_{1 n}}=M_{c}^{f(\gamma)}\end{array}\right.\right.$
$\left\{\begin{array}{c}a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}=P_{a} \cdot M_{a}^{f(\alpha)} \\ b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}=P_{b} \cdot M_{b}^{f(\beta)} \\ c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}=P_{c} \cdot M_{c}^{f(\gamma)}\end{array}\right.$
Let's write equality (9) as follows
$\frac{P_{a} \cdot M_{a}^{f(\alpha)}}{P_{c} \cdot M_{c}^{f(\gamma)}}+\frac{P_{b} \cdot M_{b}^{f(\beta)}}{P_{c} \cdot M_{c}^{f(\gamma)}}=1 \Rightarrow \frac{P_{a}}{P_{c}} \cdot \frac{M_{a}^{f(\alpha)}}{M_{c}^{f(\gamma)}}+\frac{P_{b}}{P_{c}} \cdot \frac{M_{b}^{f(\beta)}}{M_{c}^{f(\gamma)}}=1$
If $P_{a} M_{a}^{f(\alpha)} \rightarrow+\infty, P_{b} \cdot M_{b}^{f(\beta)} \rightarrow+\infty, P_{c} \cdot M_{c}^{f(\gamma)} \rightarrow+\infty$, then taking into account (9) and (16) we come to the conclusion that $f(\alpha), f(\beta), f(\gamma)$ infinitely large
functions of the same order. Please note that $P_{a}, M_{a}, P_{b}, M_{b}, P_{c}, M_{c}$ limited natural numbers.

Let's clarify that:
M_{a} - the product of those prime divisors of a whose degrees tend to infinity;
M_{b} - the product of those prime divisors of b whose degrees tend to infinity;
M_{c} - the product of those prime divisors of c whose degrees tend to infinity. P_{a}, P_{b}, P_{c} - the explanation of these components is in (14).

For (16), let's analyze four possible options:

1. Since the numbers a, b, c are mutually prime, then $\frac{M_{a}}{M_{c}} \neq 1, \frac{M_{b}}{M_{c}} \neq 1$;
2. If $\frac{M_{a}}{M_{c}}>1 \mathrm{and} /$ or $\frac{M_{b}}{M_{c}}>1$, then the left sides of equalities (16) and (9) tend to infinity;
3. If $\frac{M_{a}}{M_{c}}<1$ and/or $\frac{M_{b}}{M_{c}}<1$, then the left sides of equalities (16) and (9) tend to zero.
4. It can be assumed that

$$
\left\{\begin{array}{l}
a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}=(F(a))^{g(c)} \tag{17}\\
b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}=(H(b))^{g(c)} \\
c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}=(g(c))^{g(c)}
\end{array}\right.
$$

where $F(a), H(b), g(c)$, are infinitely large functions of the same order, and $g(c)>F(a), g(c)>H(b)$

In this case, (9) we write as follows
$\frac{a_{1}^{\alpha_{1}} \cdot a_{2}^{\alpha_{2}} \cdot \ldots \cdot a_{i}^{\alpha_{i}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}}+\frac{b_{1}^{\beta_{1}} \cdot b_{2}^{\beta_{2}} \cdot \ldots \cdot b_{j}^{\beta_{j}}}{c_{1}^{\gamma_{1}} \cdot c_{2}^{\gamma_{2}} \cdot \ldots \cdot c_{k}^{\gamma_{k}}}=1 \Rightarrow \frac{(F(a))^{g(c)}}{(g(c))^{g(c)}}+\frac{(H(b))^{g(c)}}{(g(c))^{g(c)}}=1$
For the left part (19), we write
$\frac{(F(a))^{g(c)}}{(g(c))^{g(c)}} \leq \frac{(g(c)-1)^{g(c)}}{(g(c))^{g(c)}}=\left(\frac{g(c)-1}{g(c)}\right)^{g(c)}=$

$$
\begin{gather*}
=\left(1-\frac{1}{g(c)}\right)^{g(c)} \Rightarrow \lim _{g(c) \rightarrow+\infty}\left(1-\frac{1}{g(c)}\right)^{g(c)}=\frac{1}{e}<\frac{1}{2} \tag{20}\\
\frac{(H(b))^{g(c)}}{(g(c))^{g(c)}} \leq \frac{(g(c)-1)^{g(c)}}{(g(c))^{g(c)}}=\left(\frac{g(c)-1}{g(c)}\right)^{g(c)}= \\
\quad=\left(1-\frac{1}{g(c)}\right)^{g(c)} \Rightarrow \lim _{g(c) \rightarrow+\infty}\left(1-\frac{1}{g(c)}\right)^{g(c)}=\frac{1}{e}<\frac{1}{2} \tag{21}
\end{gather*}
$$

(20) and (21) contradict (19) and (9), that is

$$
\begin{equation*}
\frac{(F(a))^{g(c)}}{(g(c))^{g(c)}}+\frac{(H(b))^{g(c)}}{(g(c))^{g(c)}}<\frac{1}{e}+\frac{1}{e}<1 \tag{22}
\end{equation*}
$$

The analysis of all four variants of equality (16) confirms that for any natural number w, the value of the number c (and the number of such numbers) given by conditions (1) and (2) are limited. So there is a number C such that

$$
\begin{equation*}
C>c>\operatorname{rad}(a b c) \tag{23}
\end{equation*}
$$

Lemma 1 has been proved.
Proof of lemma 2. We prove that for every real positive number ε there are only a finite number of triples a, b, c of mutually prime natural numbers such as $a+b=c$ and the following inequality holds
$c>\operatorname{rad}(a b c)^{1+\varepsilon}$
It is obvious that the appearance in (1) of any real positive number ε (as indicated in (24)) strengthens lemma 1 , reduces the value of the number c, and the inequality is valid
$C>c>\operatorname{rad}(a b c)^{1+\varepsilon}$
Lemma 2 has been proved.
Proof of the theorem. Если $C>c>\operatorname{rad}(a b c)^{1+\varepsilon}$, то это означает, что существует число μ, для которого выполняется условие
$c=\mu r a d(a b c)^{1+\varepsilon}$

It becomes obvious that for every real positive number ε there is a constant $K(\varepsilon)>\mu$, such that for any triple of mutually prime positive integers a, b, c such as $a+b=c$, the following inequality is true
$c<K(\varepsilon) \cdot \operatorname{rad}(a b c)^{1+\varepsilon}$
The theorem is proved.
$\boldsymbol{a b c}$-CONJECTURE is correct.

LIST OF LITERATURE

1. https://en.wikipedia.org/wiki/Abc_conjecture
